
Phylogenomics

slides marked with * by Carl Kingsford



Tree of Life

2https://simple.wikipedia.org/wiki/Tree_of_life_(biology)
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http://tolweb.org/tree/



Salzberg, Kingsford, et al., 2007

H5N1 Influenza Strains
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Salzberg, Kingsford, et al., 2007

bootstrap 
support

H5N1 Influenza Strains

*

The 2007 outbreak 
was a distinct strain
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Our tMRCA estimate showed that the root of clade A was in the month of January 2020, a period compatible with this event.

Our data suggest that SARS-CoV-2 virus entered northern Italy between the second half of January and early February 2020, which is 
weeks before the first Italian case of COVID-19 was identified and therefore long before the current containment measures were taken. 



•How many times has a feature arisen? been lost?

•How is a disease evolving to avoid immune system?

•What is the sequence of ancestral proteins?

•What are the most similar species?

•What is the rate of speciation?

• Is there a correlation between gain/loss of traits and environment? 
with geographical events?

•Which features are ancestral to a clade, which are derived?

•What structures are homologous, which are analogous?

Questions Addressable by Phylogeny

*7



•Taxon sampling: 
how many individuals are used to represent a species? 

how is the “outgroup” chosen? 

Can individuals be collected or cultured?

•Marker selection: Sequence features should:
be Representative of evolutionary history (unrecombined)

have a single copy

be able to be amplified using PCR

able to be sequenced

change enough to distinguish species, similar enough to perform MSA

Study Design Considerations

8 *



Convergent Evolution

Bird & bat wings arose independently (analogous)

Bone structure 
has common 

ancestor 
(homologous)

“Has wings” is 
thus a “bad” 

trait for 
phylogenetic 

inference

9 *



“Divergent” Evolution

“Obvious” phenotypic traits are not 
necessarily good markers

10 *

These are all one species!
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Two phylogeny “problems”

The small phylogeny problem

The large phylogeny problem
Given: a set of characters at the leaves (extant species), a set of 
states for each character, the cost of transition from each state to 
every other
Find: a tree topology and labeling for each internal node that 
minimizes the overall cost (over all trees and internal states)

Note: “Character” below is not a letter (e.g. A,C,G,T), but a particular 
characteristic under which we consider the phylogeny (e.g. column of a MSA). 
Each character takes on a state (e.g. A,C,G,T). 

Given: a set of characters at the leaves (extant species), a set of 
states for each character, the cost of transition from each state to 
every other, and the topology of the phylogenetic tree
Find: a labeling for each internal node that minimizes the overall 
cost of transitions.
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Small phylogeny problem
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Small phylogeny problem
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What was the sequence 
of the gene in this ancestral 

species?
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Small phylogeny problem — parsimony
One way to define the lowest cost set of transitions is  
to maximize parsimony.  That is, posit as few transitions 
as necessary to produce the observed result.

A A C C T

What characters should 
appear in the boxes?

Note: We’ll consider this  
“independent site” model; to  
determine the sequence of 
a gene we’ll optimize each 
nucleotide individually.
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Small phylogeny problem — parsimony
One way to define the lowest cost set of transitions is  
to maximize parsimony.  That is, posit as few transitions 
as necessary to produce the observed result.

A A C C T

Assume transitions all 
have unit cost:

A C G T
A 0 1 1 1
C 1 0 1 1
G 1 1 0 1
T 1 1 1 0
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Small phylogeny problem — parsimony
One way to define the lowest cost set of transitions is  
to maximize parsimony.  That is, posit as few transitions 
as necessary to produce the observed result.

A A C C T

Assume transitions all 
have unit cost:

A C G T
A 0 1 1 1
C 1 0 1 1
G 1 1 0 1
T 1 1 1 0

Fitch’s algorithm 
provides a solution.
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Small phylogeny problem — parsimony

A A C C T

{A} {C}

{A,C}
{T}

{A,C,T}

Fitch’s algorithm (2-pass): 
Visit nodes in post-order traversal:
store a set of characters at each node 
take the intersection of child’s set if not empty; else take the union 

Visit nodes in pre-order traversal: 
If a child’s character set has its parent’s label, choose it.  
Otherwise, select any character in this node’s character set.

Phase 1
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Small phylogeny problem — parsimony

A A C C T

{A} {C}

{A,C}
{T}

{A,C,T}

Fitch’s algorithm (2-pass): 
Visit nodes in post-order traversal:
store a set of characters at each node 
take the intersection of child’s set if not empty; else take the union 

Visit nodes in pre-order traversal: 
If a child’s character set has its parent’s label, choose it.  
Otherwise, select any character in this node’s character set.

Phase 2
+1

+1

cost = 2
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Small phylogeny problem — parsimony

A A C C T

{A} {C}

{A,C}
{T}

{A,C,T}

Fitch’s algorithm (2-pass): 
Visit nodes in post-order traversal:
store a set of characters at each node 
take the intersection of child’s set if not empty; else take the union 

Visit nodes in pre-order traversal: 
If a child’s character set has its parent’s label, choose it.  
Otherwise, select any character in this node’s character set.

+1

+1

cost = 2

Note: There are 
generally many 
solutions of optimal 
cost.
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Small phylogeny problem — parsimony

A A C C T

{A} {C}

{A,C}
{T}

{A,C,T}

Fitch’s algorithm (2-pass): 
Visit nodes in post-order traversal:
store a set of characters at each node 
take the intersection of child’s set if not empty; else take the union 

Visit nodes in pre-order traversal: 
If a child’s character set has its parent’s label, choose it.  
Otherwise, select any character in this node’s character set.

+1

+1

cost = 2

Note: There are 
generally many 
solutions of optimal 
cost.

How might you 
count them?
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Small phylogeny problem — parsimony
What if there are different costs for each transition? 
Sankoff* provides a dynamic program to solve this case.

*Sankoff & Cedergren (1983) 

Phase 1 (post-order):
For each leaf v, state t, let 

For simplicity, consider only a single character, c

For each internal v, state t, let 

Phase 2 (pre-order):

Let the root take state

For all other v with parent u, let:

Choose the best 
parent states.

Choose the best 
child states given 

the parent states chosen above

v

u w
St(v) = min

i
{Ct→i + Si(u)} + min

j
{Ct→j + Sj(w)}

St(v) = {0 if vc = t
∞ otherwise

rc = arg min
t

St(r)

vc = arg min
t (Cuc→t + St(v))
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Small phylogeny problem — parsimony
What if there are different costs for each transition? 
Sankoff* provides a dynamic program to solve this case.

*Sankoff & Cedergren (1983) 

Phase 1 (post-order):
For each leaf v, state t, let 

For simplicity, consider only a single character, c

For each internal v, state t, let 

Phase 2 (pre-order):

Let the root take state

For all other v with parent u, let:

Choose the best 
parent states.

Choose the best 
child states given 

the parent states chosen above

v

u w
St(v) = min

i
{Ct→i + Si(u)} + min

j
{Ct→j + Sj(w)}

St(v) = {0 if vc = t
∞ otherwise

rc = arg min
t

St(r)

vc = arg min
t (Cuc→t + St(v))

Cost of getting subtree  
of u in state i
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Small phylogeny problem — parsimony
What if there are different costs for each transition? 
Sankoff* provides a dynamic program to solve this case.

*Sankoff & Cedergren (1983) 

Phase 1 (post-order):
For each leaf v, state t, let 

For simplicity, consider only a single character, c

For each internal v, state t, let 

Phase 2 (pre-order):

Let the root take state

For all other v with parent u, let:

Choose the best 
parent states.

Choose the best 
child states given 

the parent states chosen above

v

u w
St(v) = min

i
{Ct→i + Si(u)} + min

j
{Ct→j + Sj(w)}

St(v) = {0 if vc = t
∞ otherwise

rc = arg min
t

St(r)

vc = arg min
t (Cuc→t + St(v))

Cost of getting subtree  
of w in state j
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Small phylogeny problem — parsimony
What if there are different costs for each transition? 
Sankoff* provides a dynamic program to solve this case.

*Sankoff & Cedergren (1983) 

Phase 1 (post-order):
For each leaf v, state t, let 

For simplicity, consider only a single character, c

For each internal v, state t, let 

Phase 2 (pre-order):

Let the root take state

For all other v with parent u, let:

Choose the best 
parent states.

Choose the best 
child states given 

the parent states chosen above

u

v

St(v) = min
i

{Ct→i + Si(u)} + min
j

{Ct→j + Sj(w)}

St(v) = {0 if vc = t
∞ otherwise

rc = arg min
t

St(r)

vc = arg min
t (Cuc→t + St(v)) Best cost of 

getting to v  
in state t
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Small phylogeny problem — parsimony
Consider the following tree and transition matrix:

A C G T

A 0 2.5 1 2.5

C 2.5 0 2.5 1

G 1 2.5 0 2.5

T 2.5 1 2.5 0

example:http://evolution.gs.washington.edu/gs541/2010/lecture1.pdf

∞ ∞ 0 ∞ 0 ∞ ∞ ∞ ∞ 0 ∞ ∞ 0 ∞ ∞ ∞ ∞ 0 ∞ ∞
G A C A C

1 5 1 5

3.5 3.5 3.5 4.5

6 6 7 8

2.5 2.5 3.5 3.5

http://evolution.gs.washington.edu/gs541/2010/lecture1.pdf
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Small phylogeny problem — parsimony
Consider the following tree and transition matrix:

A C G T

A 0 2.5 1 2.5

C 2.5 0 2.5 1

G 1 2.5 0 2.5

T 2.5 1 2.5 0

example:http://evolution.gs.washington.edu/gs541/2010/lecture1.pdf

∞ ∞ 0 ∞ 0 ∞ ∞ ∞ ∞ 0 ∞ ∞ 0 ∞ ∞ ∞ ∞ 0 ∞ ∞
G A C A C

1 5 1 5

3.5 3.5 3.5 4.5

6 6 7 8

2.5 2.5 3.5 3.5

A

A

A A

http://evolution.gs.washington.edu/gs541/2010/lecture1.pdf
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Small phylogeny problem — Maximum Likelihood

Imagine we assume a specific, probabilistic model of 
sequence evolution. For example:

𝝰 is the probability to 
mutate (per-unit time)

Jukes-cantor

https://en.wikipedia.org/wiki/Models_of_DNA_evolution

https://en.wikipedia.org/wiki/Models_of_DNA_evolution


28

Small phylogeny problem — Maximum Likelihood

Imagine we assume a specific, probabilistic model of 
sequence evolution. For example:

𝝰 is the probability to 
mutate (per-unit time)

Jukes-cantor General Time Reversible

Rate matrix (per unit time):

Transition matrix at time t:

 or
Time reversible:

⇡iQij = ⇡jQji

Base frequencies:

https://en.wikipedia.org/wiki/Models_of_DNA_evolution

https://en.wikipedia.org/wiki/Models_of_DNA_evolution
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Small phylogeny problem — Maximum Likelihood

Imagine we assume a specific, probabilistic model of 
sequence evolution.

Given a tree topology (with branch lengths), a set of 
states for each character, and the assumed model of 
state evolution

Find the states at each internal node that maximizes 
the likelihood of the observed data (i.e. states at the 
leaves)

Rather than choosing the best state at each site, we are 
summing over the possibility of all states (phylogenetic 
histories)
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0 1 2 3

4 5

6

d64

d40 d41

d65

d52 d53

L̃(s6, s4, s5) = ps6!s4(d64) · ps6!s5(d65) · ps4!s0(d40)·
ps4!s1(d41) · ps5!s2(d52) · ps5!s3(d53)

For particular ancestral states s6, s4 and s5, we can score their 
likelihood as:

Consider the simple tree

Since we don’t know these states, we must sum over them:

L =
X

s6

X

s4

X

s5

⇡s6L̃(s6, s4, s5)

Example from: http://www.bioinf.uni-freiburg.de/Lehre/Courses/
2013_SS/V_Bioinformatik_1/phylo-maximum-likelihood.pdf

http://www.bioinf.uni-freiburg.de/Lehre/Courses/2013_SS/V_Bioinformatik_1/phylo-maximum-likelihood.pdf
http://www.bioinf.uni-freiburg.de/Lehre/Courses/2013_SS/V_Bioinformatik_1/phylo-maximum-likelihood.pdf
http://www.bioinf.uni-freiburg.de/Lehre/Courses/2013_SS/V_Bioinformatik_1/phylo-maximum-likelihood.pdf
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Small phylogeny problem — Maximum Likelihood

0 1 2 3

4 5

6

d64

d40 d41

d65

d52 d53

It turns out that this objective (maximum likelihood) can also be 
optimized in polynomial time.   

This is done by re-arranging the terms and expressing them as 
conditional probabilities. 

The algorithm is due to Felsenstein* — again, it is kind of a dynamic 
program

Felsenstein, Joseph. "Evolutionary trees from DNA sequences: a maximum likelihood approach."  
Journal of molecular evolution 17.6 (1981): 368-376.
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Small phylogeny problem — Maximum Likelihood

0 1 2 3

4 5

6

d64

d40 d41

d65

d52 d53

L =
X

s6

X

s4

X

s5

⇡s6L̃(s6, s4, s5)

=
X

s6

⇡s6 ⇥

8
<

:

P
s4
ps6!s4d(s64) (ps4!s0d(s40)ps4!s1d(s41))

⇥P
s5
ps6!s5d(s65) (ps5!s2d(s52)ps5!s3d(s53))

9
=

;

via. Horner’s method (push summations to the right)

Idea 1: Re-arrange the computation 
to be more favorable
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Small phylogeny problem — Maximum Likelihood

0 1 2 3

4 5

6

d64

d40 d41

d65

d52 d53

=
X

s6

⇡s6 ⇥

8
<

:

P
s4
ps6!s4d(s64) (ps4!s0d(s40)ps4!s1d(s41))

⇥P
s5
ps6!s5d(s65) (ps5!s2d(s52)ps5!s3d(s53))

9
=

;

The structure of the equations here matches the 
structure of the tree ((.,.)(.,.)) — see e.g. nested 
parenthesis encoding of trees.
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Small phylogeny problem — Maximum Likelihood

0 1 2 3

4 5

6

d64

d40 d41

d65

d52 d53

Idea 2: define the total likelihood in terms of conditional 
likelihoods.

Lk,s

Conditional likelihood of 
the subtree rooted at k, 
assuming k takes on 
states s.



Small phylogeny problem — Maximum Likelihood

i j

k

dki dkj

Now, we can define likelihood 
recursively!

Lk,s = Pr(sk = s) if k is a leaf

Lk,s =

 
X

si

psk!si(dki)Li,si

!0

@
X

sj

psk!sj (dkj)Lj,sj

1

A

… how can we do this 
efficiently?



Small phylogeny problem — Maximum Likelihood

i j

k

dki dkj

Now, we can define likelihood 
recursively!

Lk,s = Pr(sk = s) if k is a leaf

Lk,s =

 
X

si

psk!si(dki)Li,si

!0

@
X

sj

psk!sj (dkj)Lj,sj

1

A

… how can we do this 
efficiently?

Dynamic programming: post-
order traversal of the tree!



Small phylogeny problem — Maximum Likelihood

i j

r

dri drj

At the root, we simply sum over all possible states to  
get the likelihood for the entire tree:

L =
X

sr

⇡srLr,sr

Using these likelihoods, we 
can ask questions like:

What is the probability that node k had state ‘A’?
What is the probability that node k didn’t have state ‘C’?
At node k, how likely was state ‘A’ compared to state ‘C’?



Small phylogeny problem — Maximum Likelihood

This maximum likelihood framework is very powerful.

It allows us to consider all evolutionary histories, weighted 
by their probabilities.

Also lets us evaluate other tree parameters like branch-
length.

But we there can be many assumptions baked into our 
model (and such a model is part of our ML framework)

What if our parameters are wrong?
What if our assumptions about “Markovian” mutation are wrong?
What if the structure of our model is wrong (correlated evolution)?



39

Small phylogeny problem — Maximum Likelihood

Two ways to think about ancestral state reconstruction:

1) Marginal; what state at each node is the most likely 
when summing over all possible states in the rest of the 
tree?

2) Joint; what is the highest likelihood consistent setting of 
all internal states?

How are these different? 
Is one “better” than the other? 
Why is the maximum marginal state != state in best joint 
reconstruction?
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Small phylogeny problem — Maximum Likelihood

Two ways to think about ancestral state reconstruction:

1) Marginal; what state at each node is the most likely 
when summing over all possible states in the rest of the 
tree (essentially greedy)?

2) Joint; what is the highest likelihood consistent setting of 
all states?

P(x = sx |x, T, θ) =
πsx

Ln,sx

∑sy
πsy

Ln,sy

More complicated, but 
multiple (fast) algorithms :



• Distance-based methods:
Sequences -> Distance Matrix -> Tree

Neighbor joining, UPGMA

• Maximum Likelihood:
Sequences + Model -> Tree + parameters

• Bayesian MCMC:
Markov Chain Monte Carlo: random sampling of trees by random 
walk

41

Large phylogeny problem — searching for trees

*



Additivity (for distance-based methods)
• A distance matrix M is additive if a tree can be constructed such 

that dT(i,j) = path length from i to j = Mij.

• Such a tree faithfully represents all the distances

• 4-point condition: A metric space is additive if, given any 4 points, we 
can label them so that

Mxy + Muv ≤ Mxu + Myv = Mxv + Myu 

42 *

• If our metric is additive, there is exactly one tree realizing it, and it 
can be found by successive insertion#

# lectures.molgen.mpg.de/Phylogeny/Reconstruction

http://lectures.molgen.mpg.de/Phylogeny/Reconstruction


UPGMA

• Find two most similar taxa (ie. such that Mij is smallest)

• Merge into new “OTU” (operational taxonomic unit)

• distance from k to to new OTU = average distance from k to each 
of OTUs members

• Repeat.

• Even if there is perfect tree, it may not find it.

43 *

What if our distances aren’t so nice?



Maximum Parsimony

• Input: n sequences of length k

• Output:  A tree T = (V, E) and a sequence 
su of length k for each node u to minimize:

NP-hard (reduction from Hamming distance Steiner tree)
Can score a given tree in time O(|∑|nk).

X

(u,v)2E

Hamming(su, sv)

44 *



Heuristic: Nearest Neighbor Interchange

Walk from tree T to its 
neighbors, choosing best 
neighbor at each step.

45 **



Heuristic: Nearest Neighbor Interchange

*http://www.cs.cmu.edu/~durand/03-711/2010/37-44.pdf



Maximum Likelihood

Input: n sequences S1,...,Sn of length k; choice of 
model  

Output: Tree T and parameters pe for each edge to 
maximize: 

Pr[S1,...,Sn | T, p]

NP-hard if model is Jukes-Cantor; probably NP-hard for 
other models. 

47 **



Bayesian MCMC

# of times you visit a tree (after “burn in”)= 
probability of that topology 

Outputs a distribution of trees, not a single tree.

Walk from tree T to its neighbors, 
choosing a particular neighbor at 
each step with probability related 
to its improvement in likelihood. 
This walk in the space of trees is a 
Markov chain.

48 **

Under “mild” assumptions, and after taking many samples, trees 
are visited proportional to their true probabilities.



• How confident are we in a given edge?

• Bootstrapping: 

1. Create (e.g.) 1,000 data sets of same size as input by sampling markers (MSA 
columns) with replacement.

2. Repeat phylogenetic inference on each set.

3. Support for edge is the % of trees containing this edge (bipartition). 

• Interpretation: probability that edge would be inferred on a random data set 
drawn from the same distribution as the input set.

Bootstrapping

49 *



Going from an “ensemble” to a single tree

50

Even if we can generate such an ensemble (e.g. a collection of 
trees where each is proportional to its true probability).

How can we “extract” a single, meaningful, tree from this 
ensemble?



Splits

abc | def

d e fca b

Every edge ⇒ a split, a bipartition of the taxa

• taxa within a clade leading from the edge
• taxa outside the clade leading from the edge

Example: this tree = {abc|def, ab|cdef + ‘trivial’ splits}

51 *



• Multiple trees: from bootstrap, from Bayesian MCMC, trees with 
sufficient likelihood, same parsimony:  

T = {T1,...,Tn}

• Splits of Ti := C(Ti) = { b(e) : e ∈ Ti } 
b(e) is the split (bipartition) for edge e.

•Majority consensus: tree given by splits which occur in > half 
inferred trees. 

Consensus

52 *



Incompatibility

abc | def

d e fca b

Two splits are incompatible if they cannot be in the same tree.

e

d fca b

abd | cef

Tree 1 Tree 2

aeb | cdf

53 *



• Proof: 

1. Let {sk} be the splits in > half the trees.

2. Pigeonhole: for each si, sj in {sk} there must be a tree containing 
both si and sj.

3. If si and sj are in same tree they are compatible.

4. Any set of compatible splits forms a tree.

⇒The {si} are pairwise compatible and form a tree.

Majority Consensus Always Exists

54 *



Horizontal Gene Transfer

Tree may not be best 
representation of 
evolutionary history.

DNA uptake; retroviruses

55 *


